A Mononuclear Iridium Nitrene Complex

By J. Ashley-Smith, M. Green, N. Mayne, and F. G. A. Stone*
(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

Summary Hexafluoroazomethane reacts with trans-chlorocarbonylbis(methyldiphenylphosphine)iridium(I) to yield stable nitrene complexes, cis- and trans- $\left(\mathrm{Ph}_{2} \mathrm{PMe}\right)_{2^{-}}$ $\operatorname{Ir}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{NCF}_{3}\right)$.

While investigating oxidative-addition reactions of d^{8} complexes, Collman and his co-workers ${ }^{1}$ treated $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ir}$ $(\mathrm{CO})(\mathrm{Cl})$ with organic azides in the expectation that the adducts formed would extrude nitrogen and form nitrene complexes. Instead, the novel complex $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}\left(\mathrm{~N}_{2}\right)(\mathrm{Cl})$ was obtained. Similarly, reactions between chlorocarbonylbis(methyldiphenylphosphine)iridium(1) and diethyl azodicarboxylate or 4 -phenyl-1,2,4-triazoline-3,5-dione fail to break the nitrogen-nitrogen bonds in these ligands. ${ }^{2}$ Instead, stable complexes are obtained in which the iridiumligand bonding may, in valence-bond terminology, be depictel as the three-membered ring systems:

However, a localized molecular-orbital scheme involving three centres is more satisfactory and serves to emphasize the connection between metal-to-ligand back-bonding and interatomic distances between ligand atoms in complexes of this type. ${ }^{3}$

Treatment of a benzene solution of $\left(\mathrm{Ph}_{2} \mathrm{PMe}\right)_{2} \mathrm{Ir}(\mathrm{CO})(\mathrm{Cl})$ with hexafluoroazomethane, a ligand with highly electronegative groups bonded to the nitrogen atoms, affords two complexes (I) and (II). The complex (I), m.p. 210°, which crystallises directly from the reaction solution with one molecule of benzene of crystallisation, is formulated as a trifluoromethylnitrene complex $\mathrm{CF}_{3} \mathrm{NIr}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}$. The i.r. spectrum shows a single sharp terminal carbonyl band at $2071.5 \mathrm{vs} \mathrm{cm} .^{-1}$ (chloroform). The ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ n.m.r.
spectra show, respectively, absorptions at $77 \cdot 6$ (s) p.p.m, (rel. $\mathrm{CCl}_{3} \mathrm{~F}$), and $\tau 2.62\left[20 \mathrm{H}(\mathrm{m}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right], 2.72[6 \mathrm{H}(\mathrm{s})$, $\left.\mathrm{C}_{6} H_{6}\right]$, and $7.86\left[6 \mathrm{H}(\mathrm{d}), \mathrm{CH}_{3} \mathrm{P}, J_{\mathrm{HP}} 11.0 \mathrm{c} . / \mathrm{sec}\right.$.]. The appearance of the $\mathrm{CH}_{3} \mathrm{P}{ }^{1} \mathrm{H}$ n.m.r. signal as an apparent doublet suggests ${ }^{4}$ a relative cis-configuration for the phosphine ligands.

The product obtained on removal of solvent, after separation of (I), gave on recrystallisation a white crystalline isomeric complex (II), $\mathrm{CF}_{3} \mathrm{NIr}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}$, m.p. $136-139^{\circ}$, which showed $\nu_{\max }(\mathrm{CO}) 207 \mathrm{I} .5 \mathrm{~cm} .^{-1}$ (chloroform), a ${ }^{19} \mathrm{~F}$ n.m.r. resonance at $76 \cdot 0$ (s) p.p.m., and ${ }^{1} \mathrm{H}$ n.m.r. absorptions at $\tau 2.62\left[20 \mathrm{H}(\mathrm{m}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right]$ and $7.75[6 \mathrm{H}(\mathrm{t})$, $\mathrm{CH}_{3} \mathrm{P}, J_{\text {HP }} 4.5 \mathrm{c} . / \mathrm{sec}$.]. The apparent triplet at $\tau 7.75$ indicates a relative trans-configuration for the phosphine ligands.

It is suggested that in (I) the benzene is incorporated in the crystal lattice and is not co-ordinated on to the iridium atom. ${ }^{5}$ Thus (I) and (II) may be formulated as pentacoordinate iridium(r) nitrene complexes, and may have either trigonal bipyramidal or tetragonal pyramidal structures. The bonding between the iridium and the $\mathrm{CF}_{3} \mathrm{~N}$ ligand will involve donation of an electron pair from nitrogen to iridium with concomitant back-bonding from filled iridium d-orbitals to an empty p-type orbital of nitrogen, the electronegative trifluoromethyl group serving to enhance π-bonding.

In the formation of (I) and (II) from $\mathrm{CF}_{3} \mathrm{NNCF}_{3}$ the $\mathrm{N}-\mathrm{N}$ bond is broken. Other experiments suggest that an adduct $\left(\mathrm{CF}_{3} \mathrm{~N}_{2} \mathrm{CF}_{3}\right) \operatorname{Ir}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}(\mathrm{CO})(\mathrm{Cl})$ is formed initially. Hence, under the reaction conditions back-bonding by iridium d electrons into the empty azomethane π^{*}-antibonding orbitals apparently weakens and ultimately cleaves the $\mathrm{N}-\mathrm{N}$ bond.

We thank the S.R.C. for research studentships (J.A.-S. and N.M.).
(Received, February 5th, 1969; Com. 160.).

[^0]
[^0]: ${ }^{1}$ J. F. Collman, M. Kubota, F. D. Vastine, J. Y. Sun, and J. W. Kang, J. Amer. Chem. Soc., 1968, 90, 5430.
 ${ }^{2}$ M. Green, R. B. L. Osborn, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 3083.
 ${ }^{3}$ J. A. McGinnety and J. Ibers, Chem. Comm., 1968, 235.
 ${ }^{4}$ J. M. Jenkins and B. L. Shaw, J. Chem. Soc. (A), 1966, 770.
 ${ }^{5}$ P. G. H. Troughton and A. C. Skapski, Chem. Comm., 1968, 575.

